Search results
Results From The WOW.Com Content Network
While other control charts treat rational subgroups of samples individually, the EWMA chart tracks the exponentially-weighted moving average of all prior sample means. EWMA weights samples in geometrically decreasing order so that the most recent samples are weighted most highly while the most distant samples contribute very little. [2]: 406
WPGMA (Weighted Pair Group Method with Arithmetic Mean) is a simple agglomerative (bottom-up) hierarchical clustering method, generally attributed to Sokal and Michener. [ 1 ] The WPGMA method is similar to its unweighted variant, the UPGMA method.
It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]
These methods are usually applied to short- or intermediate-range decisions. Examples of quantitative forecasting methods are [citation needed] last period demand, simple and weighted N-Period moving averages, simple exponential smoothing, Poisson process model based forecasting [15] and multiplicative seasonal indexes. Previous research shows ...
In business and for engineering economics in both industrial engineering and civil engineering practice, the minimum acceptable rate of return, often abbreviated MARR, or hurdle rate is the minimum rate of return on a project a manager or company is willing to accept before starting a project, given its risk and the opportunity cost of forgoing other projects. [1]
In the statistical analysis of time series, autoregressive–moving-average (ARMA) models are a way to describe a (weakly) stationary stochastic process using autoregression (AR) and a moving average (MA), each with a polynomial. They are a tool for understanding a series and predicting future values.
Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.
This method can also be used to create spatial weights matrices in spatial autocorrelation analyses (e.g. Moran's I). [1] The name given to this type of method was motivated by the weighted average applied, since it resorts to the inverse of the distance to each known point ("amount of proximity") when assigning weights.