Search results
Results From The WOW.Com Content Network
The dashed lines represent the light cone of a flash of light at the origin. The term Minkowski diagram refers to a specific form of spacetime diagram frequently used in special relativity. A Minkowski diagram is a two-dimensional graphical depiction of a portion of Minkowski space , usually where space has been curtailed to a single dimension.
The discontinuity in , and other properties, e.g. internal energy, , and entropy,, of the substance, is called a first order phase transition. [12] [13] In order to specify the unique experimentally observed pressure, (), at which it occurs another thermodynamic condition is required, for from Fig.1 it could clearly occur for any pressure in the range .
Rindler chart, for = in equation (), plotted on a Minkowski diagram.The dashed lines are the Rindler horizons. The worldline of a body in hyperbolic motion having constant proper acceleration in the -direction as a function of proper time and rapidity can be given by [16]
The concept of a "world line" is distinguished from concepts such as an "orbit" or a "trajectory" (e.g., a planet's orbit in space or the trajectory of a car on a road) by inclusion of the dimension time, and typically encompasses a large area of spacetime wherein paths which are straight perceptually are rendered as curves in spacetime to show ...
The purple (dashed) line shows the path of a photon emitted from the surface of a collapsing star. The green (dot-dash) line shows the path of another photon shining at the singularity. In flat spacetime, the future light cone of an event is the boundary of its causal future and its past light cone is the boundary of its causal past .
The intersection of a line and a plane in general position in three dimensions is a point. Commonly a line in space is represented parametrically ((), (), ()) and a plane by an equation + + =. Inserting the parameter representation into the equation yields the linear equation
A convex set (in pink), a supporting hyperplane of (the dashed line), and the supporting half-space delimited by the hyperplane which contains (in light blue).. In geometry, a supporting hyperplane of a set in Euclidean space is a hyperplane that has both of the following two properties: [1]
In analytic geometry, an asymptote (/ ˈ æ s ɪ m p t oʊ t /) of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the x or y coordinates tends to infinity. In projective geometry and related contexts, an asymptote of a curve is a line which is tangent to the curve at a point at infinity ...