When.com Web Search

  1. Ads

    related to: aspherical lens convex mirror for sale

Search results

  1. Results From The WOW.Com Content Network
  2. Curved mirror - Wikipedia

    en.wikipedia.org/wiki/Curved_mirror

    A convex mirror diagram showing the focus, focal length, centre of curvature, principal axis, etc. A convex mirror or diverging mirror is a curved mirror in which the reflective surface bulges towards the light source. [1] Convex mirrors reflect light outwards, therefore they are not used to focus light.

  3. Aspheric lens - Wikipedia

    en.wikipedia.org/wiki/Aspheric_lens

    The reading portion is an aspheric "progressive add". Also, in aphakia or extreme hyperopia, high plus power aspheric lenses can be prescribed, but this practice is becoming obsolete, replaced by surgical implants of intra-ocular lenses. Many convex types of lens have been approved by governing agencies regulating prescriptions.

  4. Schmidt camera - Wikipedia

    en.wikipedia.org/wiki/Schmidt_camera

    Schmidt corrector plates work because they are aspheric lenses with spherical aberration that is equal to but opposite of the spherical primary mirrors they are placed in front of. They are placed at the center of curvature "C" of the mirrors for a pure Schmidt camera and just behind the prime focus for a Schmidt–Cassegrain. The Schmidt ...

  5. Reflecting telescope - Wikipedia

    en.wikipedia.org/wiki/Reflecting_telescope

    A convex secondary mirror is placed just to the side of the light entering the telescope, and positioned afocally so as to send parallel light on to the tertiary. The concave tertiary mirror is positioned exactly twice as far to the side of the entering beam as was the convex secondary, and its own radius of curvature distant from the secondary.

  6. Radius of curvature (optics) - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature_(optics)

    A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis. The vertex of the lens surface is located on the local optical axis. The distance from the vertex to the center of curvature is the radius of curvature of the surface.

  7. Spherical aberration - Wikipedia

    en.wikipedia.org/wiki/Spherical_aberration

    In lens systems, aberrations can be minimized using combinations of convex and concave lenses, or by using aspheric lenses or aplanatic lenses. Lens systems with aberration correction are usually designed by numerical ray tracing. For simple designs, one can sometimes analytically calculate parameters that minimize spherical aberration.

  8. Precision glass moulding - Wikipedia

    en.wikipedia.org/wiki/Precision_glass_moulding

    Concerning the curvature of the lens elements, the following statements can be drawn: Acceptable lens shapes are most bi-convex, plano-convex and mild meniscus shapes. Not unacceptable but hard to mould are bi-concave lenses, steep meniscus lenses, and lenses with severe features (e.g. a bump on a convex surface).

  9. Sagitta (optics) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(optics)

    Deep blue ray refers the radius of curvature and the red line segment is the sagitta of the curve (black).. In optics and especially telescope making, sagitta or sag is a measure of the glass removed to yield an optical curve.