When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other. [ 1 ] More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry , i.e., a combination of rigid motions , namely a ...

  3. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    CPCTC (triangle geometry) Cameron–Erdős theorem (discrete mathematics) ... Geometric mean theorem ; Geroch's splitting theorem (differential geometry)

  4. List of mathematical abbreviations - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical...

    def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.

  5. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side".

  6. Hinge theorem - Wikipedia

    en.wikipedia.org/wiki/Hinge_theorem

    The hinge theorem holds in Euclidean spaces and more generally in simply connected non-positively curved space forms.. It can be also extended from plane Euclidean geometry to higher dimension Euclidean spaces (e.g., to tetrahedra and more generally to simplices), as has been done for orthocentric tetrahedra (i.e., tetrahedra in which altitudes are concurrent) [2] and more generally for ...

  7. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    Definition: [7] The midpoint of two elements x and y in a vector space is the vector ⁠ 1 / 2 ⁠ (x + y). Theorem [ 7 ] [ 8 ] — Let A : X → Y be a surjective isometry between normed spaces that maps 0 to 0 ( Stefan Banach called such maps rotations ) where note that A is not assumed to be a linear isometry.

  8. List of triangle topics - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_topics

    This list of triangle topics includes things related to the geometric shape, either abstractly, as in idealizations studied by geometers, or in triangular arrays such as Pascal's triangle or triangular matrices, or concretely in physical space.

  9. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.