When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    Conservation laws are fundamental to our understanding of the physical world, in that they describe which processes can or cannot occur in nature. For example, the conservation law of energy states that the total quantity of energy in an isolated system does not change, though it may change form.

  3. No-hiding theorem - Wikipedia

    en.wikipedia.org/wiki/No-hiding_theorem

    But the no-hiding theorem is a more general proof of conservation of quantum information which originates from the proof of conservation of wave function in quantum theory. It may be noted that the conservation of entropy holds for a quantum system undergoing unitary time evolution and that if entropy represents information in quantum theory ...

  4. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    Continuity equations are a stronger, local form of conservation laws. For example, a weak version of the law of conservation of energy states that energy can neither be created nor destroyed—i.e., the total amount of energy in the universe is fixed. This statement does not rule out the possibility that a quantity of energy could disappear ...

  5. Noether's theorem - Wikipedia

    en.wikipedia.org/wiki/Noether's_theorem

    In quantum field theory, the analog to Noether's theorem, the Ward–Takahashi identity, yields further conservation laws, such as the conservation of electric charge from the invariance with respect to a change in the phase factor of the complex field of the charged particle and the associated gauge of the electric potential and vector potential.

  6. Conservation of mass - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_mass

    The law of conservation of mass and the analogous law of conservation of energy were finally generalized and unified into the principle of mass–energy equivalence, described by Albert Einstein's equation =. Special relativity also redefines the concept of mass and energy, which can be used interchangeably and are defined relative to the frame ...

  7. Conservation of energy - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_energy

    This is an accepted version of this page This is the latest accepted revision, reviewed on 31 December 2024. Law of physics and chemistry This article is about the law of conservation of energy in physics. For sustainable energy resources, see Energy conservation. Part of a series on Continuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion ...

  8. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The law that entropy always increases holds, I think, the supreme position among the laws of Nature. If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equations – then so much the worse for Maxwell's equations. If it is found to be contradicted by observation – well, these experimentalists ...

  9. Time-translation symmetry - Wikipedia

    en.wikipedia.org/wiki/Time-translation_symmetry

    Time-translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time-translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time-translation symmetry is closely connected, via Noether's theorem, to conservation of energy. [1]