Search results
Results From The WOW.Com Content Network
In logic, mathematics and linguistics, and is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as ∧ {\displaystyle \wedge } [ 1 ] or & {\displaystyle \&} or K {\displaystyle K} (prefix) or × {\displaystyle \times } or ⋅ {\displaystyle \cdot } [ 2 ] in ...
definition: is defined as metalanguage:= means "from now on, is defined to be another name for ." This is a statement in the metalanguage, not the object language. The notation may occasionally be seen in physics, meaning the same as :=.
Both conjunction and disjunction are associative, commutative and idempotent in classical logic, most varieties of many-valued logic and intuitionistic logic. The same is true about distributivity of conjunction over disjunction and disjunction over conjunction, as well as for the absorption law.
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
In logic, a clause is a propositional formula formed from a finite collection of literals (atoms or their negations) and logical connectives.A clause is true either whenever at least one of the literals that form it is true (a disjunctive clause, the most common use of the term), or when all of the literals that form it are true (a conjunctive clause, a less common use of the term).
Wedge (∧) is a symbol that looks similar to an in-line caret (^). It is used to represent various operations.In Unicode, the symbol is encoded U+2227 ∧ LOGICAL AND (∧, ∧) and by \wedge and \land in TeX.
A logical formula is considered to be in CNF if it is a conjunction of one or more disjunctions of one or more literals. As in disjunctive normal form (DNF), the only propositional operators in CNF are or ( ∨ {\displaystyle \vee } ), and ( ∧ {\displaystyle \wedge } ), and not ( ¬ {\displaystyle \neg } ).
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.