Search results
Results From The WOW.Com Content Network
Dendrites provide an enlarged surface area to receive signals from axon terminals of other neurons. [4] The dendrite of a large pyramidal cell receives signals from about 30,000 presynaptic neurons. [5] Excitatory synapses terminate on dendritic spines, tiny protrusions from the dendrite with a high density of neurotransmitter receptors.
Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those ...
Axon terminals contain synaptic vesicles that store the neurotransmitter for release at the synapse. This makes multiple synaptic connections with other neurons possible. Sometimes the axon of a neuron may synapse onto dendrites of the same neuron, when it is known as an autapse.
Dendritic spines serve as a storage site for synaptic strength and help transmit electrical signals to the neuron's cell body. Most spines have a bulbous head (the spine head), and a thin neck that connects the head of the spine to the shaft of the dendrite. The dendrites of a single neuron can contain hundreds to thousands of spines.
The impulse travels down the axon in one direction only, to the axon terminal where it signals other neurons. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. [1] This depolarization then causes adjacent locations to similarly depolarize.
Lamellar microtubules: They are the microtubules that eventually wrap around the axon, forming the myelin sheath. Actin-based: These include terminal foot processes of podocytes and dendritic spines (small protrusions arising from dendrites). [3] IF-based: The predominant cytoskeletal element within astrocyte processes at birth is microtubules.
Axonal transport, also called axoplasmic transport or axoplasmic flow, is a cellular process responsible for movement of mitochondria, lipids, synaptic vesicles, proteins, and other organelles to and from a neuron's cell body, through the cytoplasm of its axon called the axoplasm. [1]
Dendrodendritic synapses are connections between the dendrites of two different neurons. This is in contrast to the more common axodendritic synapse (chemical synapse) where the axon sends signals and the dendrite receives them. Dendrodendritic synapses are activated in a similar fashion to axodendritic synapses in respects to using a chemical ...