Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
The Weibull distribution or Rosin Rammler distribution, of which the exponential distribution is a special case, is used to model the lifetime of technical devices and is used to describe the particle size distribution of particles generated by grinding, milling and crushing operations. The modified half-normal distribution. [1]
The terms "distribution" and "family" are often used loosely: Specifically, an exponential family is a set of distributions, where the specific distribution varies with the parameter; [a] however, a parametric family of distributions is often referred to as "a distribution" (like "the normal distribution", meaning "the family of normal distributions"), and the set of all exponential families ...
The Erlang distribution is a series of k exponential distributions all with rate . The hypoexponential is a series of k exponential distributions each with their own rate λ i {\displaystyle \lambda _{i}} , the rate of the i t h {\displaystyle i^{th}} exponential distribution.
The q-exponential is a special case of the generalized Pareto distribution where =, =, = (). The q-exponential is the generalization of the Lomax distribution (Pareto Type II), as it extends this distribution to the cases of finite support.
The probability density function of the wrapped exponential distribution is [1] (;) = = (+) =,for < where > is the rate parameter of the unwrapped distribution. This is identical to the truncated distribution obtained by restricting observed values X from the exponential distribution with rate parameter λ to the range <.
Laplace distribution, or bilateral exponential distribution, consisting of two exponential distributions glued together on each side of a threshold; Gumbel distribution, the cumulative distribution function of which is an iterated exponential function (the exponential of an exponential function).
In probability theory, the matrix-exponential distribution is an absolutely continuous distribution with rational Laplace–Stieltjes transform. [1] They were first introduced by David Cox in 1955 as distributions with rational Laplace–Stieltjes transforms.