Search results
Results From The WOW.Com Content Network
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
A geometric way of deriving the sine or cosine of 45° is by considering an isosceles right triangle with leg length 1. Since two of the angles in an isosceles triangle are equal, if the remaining angle is 90° for a right triangle, then the two equal angles are each 45°.
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.
Historically, the earliest method by which trigonometric tables were computed, and probably the most common until the advent of computers, was to repeatedly apply the half-angle and angle-addition trigonometric identities starting from a known value (such as sin(π/2) = 1, cos(π/2) = 0).
Then multiplying the numerator and denominator inside the square root by (1 + cos θ) and using Pythagorean identities leads to: = + . Also, if the numerator and denominator are both multiplied by (1 - cos θ), the result is:
In data analysis, cosine similarity is a measure of similarity between two non-zero vectors defined in an inner product space. Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths. It follows that the cosine similarity does not depend on the ...
which by the Pythagorean theorem is equal to 1. This definition is valid for all angles, due to the definition of defining x = cos θ and y sin θ for the unit circle and thus x = c cos θ and y = c sin θ for a circle of radius c and reflecting our triangle in the y-axis and setting a = x and b = y.