Search results
Results From The WOW.Com Content Network
Creep behavior can be split into three main stages. In primary, or transient, creep, the strain rate is a function of time. In Class M materials, which include most pure materials, primary strain rate decreases over time. This can be due to increasing dislocation density, or it can be due to evolving grain size. In class A materials, which have ...
The general equation for power law creep is as follows, [17] where is a dimensionless constant relating shear strain rate and stress, μ is the shear modulus, b is the Burger's vector, k is the Boltzmann constant, T is the temperature, n is the stress exponent, is the applied shear stress, and is the effective diffusion constant.
When the stress is maintained for a shorter time period, the material undergoes an initial strain until a time , after which the strain immediately decreases (discontinuity) then gradually decreases at times > to a residual strain. Viscoelastic creep data can be presented by plotting the creep modulus (constant applied stress divided by total ...
The classical creep curve represents the evolution of strain as a function of time in a material subjected to uniaxial stress at a constant temperature. The creep test, for instance, is performed by applying a constant force/stress and analyzing the strain response of the system.
Ratcheting is a progressive, incremental inelastic deformation characterized by a shift of the stress-strain hysteresis loop along the strain axis. [4] When the amplitude of cyclic stresses exceed the elastic limit, the plastic deformation that occurs keep accumulating paving way for a catastrophic failure of the structure.
Source: [6] can be obtained by accelerated creep test in which strain is recirded, interpolating the data (,) (˙) = ˙ + (˙) When adopting the Omega Method for a remaining life assessment, it is sufficient to estimate the creep strain rate at the service stress and temperature by conducting creep tests on the material that has been exposed to service conditions.
L. M. Kachanov [5] and Y. N. Rabotnov [6] suggested the following evolution equations for the creep strain ε and a lumped damage state variable ω: ˙ = ˙ ˙ = ˙ where ˙ is the creep strain rate, ˙ is the creep-rate multiplier, is the applied stress, is the creep stress exponent of the material of interest, ˙ is the rate of damage accumulation, ˙ is the damage-rate multiplier, and is ...
Primary Creep: the initial creep stage where the slope is rising rapidly at first in a short amount of time. After a certain amount of time has elapsed, the slope will begin to slowly decrease from its initial rise. Steady State Creep: the creep rate is constant so the line on the curve shows a straight line that is a steady rate.