Search results
Results From The WOW.Com Content Network
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque. [1] [2] Torsion could be defined as strain [3] [4] or angular deformation, [5] and is measured by the angle a chosen section is rotated from its equilibrium position. [6]
In two dimensions, the stress tensor at a given material point with respect to any two perpendicular directions is completely defined by only three stress components. For the particular coordinate system ( x , y ) {\displaystyle (x,y)} these stress components are: the normal stresses σ x {\displaystyle \sigma _{x}} and σ y {\displaystyle ...
The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.
Along with axial stress and radial stress, circumferential stress is a component of the stress tensor in cylindrical coordinates. It is usually useful to decompose any force applied to an object with rotational symmetry into components parallel to the cylindrical coordinates r , z , and θ .
Stress resultants are simplified representations of the stress state in structural elements such as beams, plates, or shells. [1] The geometry of typical structural elements allows the internal stress state to be simplified because of the existence of a "thickness'" direction in which the size of the element is much smaller than in other directions.
This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...
Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.
Combining these two features with the length of the shaft, , one is able to calculate a shaft's angular deflection, , due to the applied torque, : = As shown, the larger the material's shear modulus and polar second moment of area (i.e. larger cross-sectional area), the greater resistance to torsional deflection.