Search results
Results From The WOW.Com Content Network
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.
In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite. [1] [2] The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.
So 1 and 8 are false positives for the "primality" of 9 (since 9 is not actually prime). These are in fact the only ones, so the subgroup {1,8} is the subgroup of false witnesses. The same argument shows that n − 1 is a "false witness" for any odd composite n.
Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as the last digit of any even number is 0, 2, 4, 6, or 8.
This definition includes numbers that lack some of the smaller prime factors; for example, both 10 and 12 are 5-smooth, even though they miss out the prime factors 3 and 5, respectively. All 5-smooth numbers are of the form 2 a × 3 b × 5 c , where a , b and c are non-negative integers.
Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5 , but 7 is a prime number because it cannot be decomposed in this way.
There are some tests for numbers of the form k 2 m + 1, such as factors of Fermat numbers, for primality. Proth's theorem (1878). Let N = k 2 m + 1 with odd k < 2 m. If there is an integer a such that / then is prime. Conversely, if the above congruence does not hold, and in addition
The only known non-palindromic number whose cube is a palindrome is 2201, and it is a conjecture the fourth root of all the palindrome fourth powers are a palindrome with 100000...000001 (10 n + 1). Gustavus Simmons conjectured there are no palindromes of form n k for k > 4 (and n > 1).