When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    Heun's Method addresses this problem by considering the interval spanned by the tangent line segment as a whole. Taking a concave-up example, the left tangent prediction line underestimates the slope of the curve for the entire width of the interval from the current point to the next predicted point.

  3. Brachistochrone curve - Wikipedia

    en.wikipedia.org/wiki/Brachistochrone_curve

    The curve of fastest descent is not a straight or polygonal line (blue) but a cycloid (red).. In physics and mathematics, a brachistochrone curve (from Ancient Greek βράχιστος χρόνος (brákhistos khrónos) 'shortest time'), [1] or curve of fastest descent, is the one lying on the plane between a point A and a lower point B, where B is not directly below A, on which a bead slides ...

  4. Line drawing algorithm - Wikipedia

    en.wikipedia.org/wiki/Line_drawing_algorithm

    dx = x2 − x1 dy = y2y1 m = dy/dx for x from x1 to x2 do y = m × (x − x1) + y1 plot(x, y) Here, the points have already been ordered so that x 2 > x 1 {\displaystyle x_{2}>x_{1}} . This algorithm is unnecessarily slow because the loop involves a multiplication, which is significantly slower than addition or subtraction on most devices.

  5. Slope - Wikipedia

    en.wikipedia.org/wiki/Slope

    Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.

  6. Bresenham's line algorithm - Wikipedia

    en.wikipedia.org/wiki/Bresenham's_line_algorithm

    Keeping in mind that the slope is at most , the problem now presents itself as to whether the next point should be at (+,) or (+, +). Perhaps intuitively, the point should be chosen based upon which is closer to the line at +. If it is closer to the former then include the former point on the line, if the latter then the latter.

  7. Hydraulic jumps in rectangular channels - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_Jumps_in...

    Hydraulic jump in a rectangular channel, also known as classical jump, is a natural phenomenon that occurs whenever flow changes from supercritical to subcritical flow. In this transition, the water surface rises abruptly, surface rollers are formed, intense mixing occurs, air is entrained, and often a large amount of energy is dissipated.

  8. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equation. Here, a differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.

  9. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The calculus of variations may be said to begin with Newton's minimal resistance problem in 1687, followed by the brachistochrone curve problem raised by Johann Bernoulli (1696). [2] It immediately occupied the attention of Jacob Bernoulli and the Marquis de l'Hôpital , but Leonhard Euler first elaborated the subject, beginning in 1733.