Ads
related to: 4-20 ma calibrator water tank
Search results
Results From The WOW.Com Content Network
To allow the construction of hybrid systems, where the 4–20 mA is generated by the controller, but allows the use of pneumatic valves, a range of current to pressure (I to P) converters are available from manufacturers. These are usually local to the control valve and convert 4–20 mA to 3–15 psi (or 0.2–1.0 bar).
The second type of positioner is an analog I/P positioner. Most modern processing units use a 4 to 20 mA DC signal to modulate the control valves. This introduces electronics into the positioner design and requires that the positioner convert the electronic current signal into a pneumatic pressure signal (current-to-pneumatic or I/P).
Only one instrument can be put on each instrument cable signal pair. One signal, generally specified by the user, is specified to be the 4–20 mA signal. Other signals are sent digitally on top of the 4–20 mA signal. For example, pressure can be sent as 4–20 mA, representing a range of pressures, and temperature can be sent digitally over ...
This page was last edited on 13 March 2007, at 22:35 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
Sign in to your AOL account.
Alden is the largest independent supplier of National Institute of Standards and Technology traceable water flow meter calibrations in the United States. The facility has two calibration laboratories with several weigh tanks with capacities from 1,000 to 100,000 lb (45,000 kg).
Water metering is the practice of measuring water use. Water meters measure the volume of water used by residential and commercial building units that are supplied with water by a public water supply system. They are also used to determine flow through a particular portion of the system.
A common fixed-point calibration method for industrial-grade probes is the ice bath. The equipment is inexpensive, easy to use, and can accommodate several sensors at once. The ice point is designated as a secondary standard because its accuracy is ±0.005 °C (±0.009 °F), compared to ±0.001 °C (±0.0018 °F) for primary fixed points.