Search results
Results From The WOW.Com Content Network
An example is the E-box (sequence CACGTG), which binds transcription factors in the basic helix-loop-helix (bHLH) family (e.g. BMAL1-Clock, cMyc). [21] Some promoters that are targeted by multiple transcription factors might achieve a hyperactive state, leading to increased transcriptional activity. [22]
The DNA sequence that a transcription factor binds to is called a transcription factor-binding site or response element. [62] Transcription factors interact with their binding sites using a combination of electrostatic (of which hydrogen bonds are a special case) and Van der Waals forces. Due to the nature of these chemical interactions, most ...
A transcription factor is a protein that binds to specific DNA sequences (enhancer or promoter), either alone or with other proteins in a complex, to control the rate of transcription of genetic information from DNA to messenger RNA by promoting (serving as an activator) or blocking (serving as a repressor) the recruitment of RNA polymerase.
EGR1 is a transcription factor important for regulation of methylation of CpG islands. An EGR1 transcription factor binding site is frequently located in enhancer or promoter sequences. [20] There are about 12,000 binding sites for EGR1 in the mammalian genome and about half of EGR1 binding sites are located in promoters and half in enhancers. [20]
Any mutation allowing a mutated nucleotide in the core promoter sequence to look more like the consensus sequence is known as an up mutation. This kind of mutation will generally make the promoter stronger, and thus the RNA polymerase forms a tighter bind to the DNA it wishes to transcribe and transcription is up-regulated.
In the looping model, the transcription factor binds to the cis-regulatory module, which then causes the looping of the DNA sequence and allows for the interaction with the target gene promoter. The transcription factor-cis-regulatory module complex causes the looping of the DNA sequence slowly towards the target promoter and forms a stable ...
A transcriptional activator is a protein (transcription factor) that increases transcription of a gene or set of genes. [1] Activators are considered to have positive control over gene expression, as they function to promote gene transcription and, in some cases, are required for the transcription of genes to occur.
Ndt80 is a meiosis-specific transcription factor required for successful completion of meiosis and spore formation. [17] The protein recognizes and binds to the middle sporulation element (MSE) 5'-C[AG]CAAA[AT]-3' in the promoter region of stage-specific genes that are required for progression through meiosis and sporulation.