Search results
Results From The WOW.Com Content Network
Top: The nucleus absorbs an electron. Lower left: An outer electron replaces the "missing" electron. Electromagnetic radiation equal in energy to the difference between the two electron shells is emitted. Lower right: In the Auger effect, the energy absorbed when the outer electron replaces the inner electron is transferred to an outer electron ...
Electrons can relax into states of lower energy by emitting electromagnetic radiation in the form of a photon. Electrons can also absorb passing photons, which excites the electron into a state of higher energy. The larger the energy separation between the electron's initial and final state, the shorter the photons' wavelength. [4]
Electron excitation is the transfer of a bound electron to a more energetic, but still bound state. This can be done by photoexcitation (PE), where the electron absorbs a photon and gains all its energy [1] or by collisional excitation (CE), where the electron receives energy from a collision with another, energetic electron. [2]
An electron further from the nucleus has higher potential energy than an electron closer to the nucleus, thus it becomes less bound to the nucleus, since its potential energy is negative and inversely dependent on its distance from the nucleus. [6]
By giving the atom additional energy (for example, by absorption of a photon of an appropriate energy), the electron moves into an excited state (one with one or more quantum numbers greater than the minimum possible). When the electron finds itself between two states—a shift which happens very fast—it's in a superposition of both states. [2]
The photons of a light beam have a characteristic energy, called photon energy, which is proportional to the frequency of the light.In the photoemission process, when an electron within some material absorbs the energy of a photon and acquires more energy than its binding energy, it is likely to be ejected.
Upon striking the sample, photons that match the energy gap of the molecules present (green light in this example) are absorbed, exciting the molecules. Other photons are scattered (not shown here) or transmitted unaffected; if the radiation is in the visible region (400–700 nm), the transmitted light appears as the complementary color (here ...
An electron in an excited state may decay to a lower energy state which is not occupied, according to a particular time constant characterizing that transition. When such an electron decays without external influence, emitting a photon, that is called "spontaneous emission". The phase and direction associated with the photon that is emitted is ...