Search results
Results From The WOW.Com Content Network
The application of kinetic theory to ideal gases makes the following assumptions: The gas consists of very small particles. This smallness of their size is such that the sum of the volume of the individual gas molecules is negligible compared to the volume of the container of the gas.
In the kinetic theory of gases in physics, the molecular chaos hypothesis (also called Stosszahlansatz in the writings of Paul and Tatiana Ehrenfest [1] [2]) is the assumption that the velocities of colliding particles are uncorrelated, and independent of position.
Drude applied the kinetic theory of a dilute gas, despite the high densities, therefore ignoring electron–electron and electron–ion interactions aside from collisions. [Ashcroft & Mermin 13] The Drude model considers the metal to be formed of a collection of positively charged ions from which a number of "free electrons" were detached.
Two major assumptions are used in this method: The compound vapor behaves as an ideal gas (follows all 5 postulates of the kinetic theory of gases); Either the volume of the vessel does not vary significantly between room temperature and the working temperature, or the volume of the vessel may be accurately determined at the working temperature
This article inspired further work based on the twin ideas that substances are composed of indivisible particles, and that heat is a consequence of the particle motion; movement that evolves in accordance with Newton's laws. The work, known as the kinetic theory of gases, was done principally by Clausius, James Clerk Maxwell, and Ludwig Boltzmann.
At the molecular level, gas dynamics is a study of the kinetic theory of gases, often leading to the study of gas diffusion, statistical mechanics, chemical thermodynamics and non-equilibrium thermodynamics. [2] Gas dynamics is synonymous with aerodynamics when the gas field is air and the subject of study is flight.
The general form of the Eyring–Polanyi equation somewhat resembles the Arrhenius equation: = ‡ where is the rate constant, ‡ is the Gibbs energy of activation, is the transmission coefficient, is the Boltzmann constant, is the temperature, and is the Planck constant.
The kinetic theory of gases applies to the classical ideal gas, which is an idealization of real gases. In real gases, there are various effects (e.g., van der Waals interactions , vortical flow, relativistic speed limits, and quantum exchange interactions ) that can make their speed distribution different from the Maxwell–Boltzmann form.