Search results
Results From The WOW.Com Content Network
Interaction energy of an argon dimer.The long-range section is due to London dispersion forces. London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds [1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically ...
It occurs when a hydrogen (H) atom, covalently bonded to a more electronegative donor atom or group (Dn), interacts with another electronegative atom bearing a lone pair of electrons—the hydrogen bond acceptor (Ac). Unlike simple dipole–dipole interactions, hydrogen bonding arises from charge transfer (nB → σ*AH), orbital interactions ...
A hydrogen bond is a specific dipole where a hydrogen atom has a partial positive charge (δ+) to due a neighboring electronegative atom or functional group. [9] [10] Hydrogen bonds are amongst the strong intermolecular interactions know other than ion-dipole interactions. [10]
Ion–dipole and ion–induced dipole forces are stronger than dipole–dipole interactions because the charge of any ion is much greater than the charge of a dipole moment. Ion–dipole bonding is stronger than hydrogen bonding. [8] An ion–dipole force consists of an ion and a polar molecule interacting.
Debye forces, or dipole–induced dipole interactions, can also play a role in dispersive adhesion. These come about when a nonpolar molecule becomes temporarily polarized due to interaction with a nearby polar molecule. This "induced dipole" in the nonpolar molecule then is attracted to the permanent dipole, yielding a Debye attraction.
A hydrogen bond (H-bond), is a specific type of interaction that involves dipole–dipole attraction between a partially positive hydrogen atom and a highly electronegative, partially negative oxygen, nitrogen, sulfur, or fluorine atom (not covalently bound to said hydrogen atom). It is not a covalent bond, but instead is classified as a strong ...
In physisorption, perturbation of the electronic states of adsorbent and adsorbate is minimal. The adsorption forces include London Forces, dipole-dipole attractions, dipole-induced attraction and "hydrogen bonding." For chemisorption, changes in the electronic states may be detectable by suitable physical means, in other words, chemical bonding.
In chemistry, a dihydrogen bond is a kind of hydrogen bond, an interaction between a metal hydride bond and an OH or NH group or other proton donor. With a van der Waals radius of 1.2 Å, hydrogen atoms do not usually approach other hydrogen atoms closer than 2.4 Å. Close approaches near 1.8 Å, are, however, characteristic of dihydrogen ...