Search results
Results From The WOW.Com Content Network
The first description of cooperative binding to a multi-site protein was developed by A.V. Hill. [4] Drawing on observations of oxygen binding to hemoglobin and the idea that cooperativity arose from the aggregation of hemoglobin molecules, each one binding one oxygen molecule, Hill suggested a phenomenological equation that has since been named after him:
Among the tightest known protein–protein complexes is that between the enzyme angiogenin and ribonuclease inhibitor; the dissociation constant for the human proteins is 5x10 −16 mol/L. [3] [4] Another biological example is the binding protein streptavidin, which has extraordinarily high affinity for biotin (vitamin B7/H, dissociation ...
The Hill equation reflects the occupancy of macromolecules: the fraction that is saturated or bound by the ligand. [1] [2] [nb 1] This equation is formally equivalent to the Langmuir isotherm. [3] Conversely, the Hill equation proper reflects the cellular or tissue response to the ligand: the physiological output of the system, such as muscle ...
At the regulatory site, the binding of a ligand may elicit amplified or inhibited protein function. [ 4 ] [ 22 ] The binding of a ligand to an allosteric site of a multimeric enzyme often induces positive cooperativity, that is the binding of one substrate induces a favorable conformation change and increases the enzyme's likelihood to bind to ...
Cobalt complex HCo(CO) 4 with five ligands. In coordination chemistry, a ligand [a] is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electron pairs, often through Lewis bases. [1]
In DNA-ligand binding studies, the ligand can be a small molecule, ion, [1] or protein [2] which binds to the DNA double helix. The relationship between ligand and binding partner is a function of charge, hydrophobicity, and molecular structure. Binding occurs by intermolecular forces, such as ionic bonds, hydrogen bonds and Van der Waals forces.
One manifestation of this is enzymes or receptors that have multiple binding sites where the affinity of the binding sites for a ligand is apparently increased, positive cooperativity, or decreased, negative cooperativity, upon the binding of a ligand to a binding site. For example, when an oxygen atom binds to one of hemoglobin's four binding ...
The Scatchard equation is an equation used in molecular biology to calculate the affinity and number of binding sites of a receptor for a ligand. [1] It is named after the American chemist George Scatchard.