Search results
Results From The WOW.Com Content Network
A diagram of an aquaplaning tire Two vehicles aquaplaning through large puddles on the road's surface. Aquaplaning or hydroplaning by the tires of a road vehicle, aircraft or other wheeled vehicle occurs when a layer of water builds between the wheels of the vehicle and the road surface, leading to a loss of traction that prevents the vehicle from responding to control inputs.
Pressure potential increases as water enters a cell. As water passes through the cell wall and cell membrane, it increases the total amount of water present inside the cell, which exerts an outward pressure that is opposed by the structural rigidity of the cell wall. By creating this pressure, the plant can maintain turgor, which allows the ...
Pore water pressure (sometimes abbreviated to pwp) refers to the pressure of groundwater held within a soil or rock, in gaps between particles . Pore water pressures below the phreatic level of the groundwater are measured with piezometers. The vertical pore water pressure distribution in aquifers can generally be assumed to be close to ...
The pressure on a pressure-temperature diagram (such as the water phase diagram shown above) is the partial pressure of the substance in question. A phase diagram in physical chemistry , engineering , mineralogy , and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct ...
When in a hypotonic solution, water flows into the membrane and increases the cell's volume, while in an isotonic solution, water flows in and out of the cell at an equal rate. [4] Turgidity is the point at which the cell's membrane pushes against the cell wall, which is when turgor pressure is high. When the cell has low turgor pressure, it is ...
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
The saturation with respect to water cannot be measured much below –50 °C, so manufacturers should use one of the following expressions for calculating saturation vapour pressure relative to water at the lowest temperatures – Wexler (1976, 1977), [1] [2] reported by Flatau et al. (1992)., [3] Hyland and Wexler (1983) or Sonntag (1994 ...
Potential flow describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field , which is a valid approximation for several applications.