Ads
related to: non inclined orbit system to fill a tank with liquid oxygen for water delivery
Search results
Results From The WOW.Com Content Network
A Propulsive Fluid Accumulator is an artificial Earth satellite which collects and stores oxygen and other atmospheric gases for in-situ refuelling of high-thrust rockets. This eliminates the need to lift oxidizer to orbit and therefore brings significant cost benefits.
Oxygen is a moderate cryogen as air will not liquefy against a liquid oxygen tank, so it is possible to store LOX briefly in a rocket without excessive insulation. [ clarification needed ] In Germany, engineers and scientists began building and testing liquid propulsion rockets in the late 1920s. [ 5 ]
Liquid rocket engines have tankage and pipes to store and transfer propellant, an injector system and one or more combustion chambers with associated nozzles.. Typical liquid propellants have densities roughly similar to water, approximately 0.7 to 1.4 g/cm 3 (0.025 to 0.051 lb/cu in).
The target launch cost was $1 million. Aquarius was designed to be a single-stage vehicle 43 meters (141 ft) high and 4 meters (13.1 ft) in diameter and powered by a single pressure fed engine using liquid hydrogen and oxygen propellants stored in a composite pressure tank. [1]
Moving in low Earth orbit, at an altitude of around 120 km, Demetriades' proposed depot extracts air from the fringes of the atmosphere, compresses and cools it, and extracts liquid oxygen. The remaining nitrogen is used as propellant for a nuclear-powered magnetohydrodynamic engine, which maintains the orbit, compensating for atmospheric drag ...
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (14.5 psi).
These had three diesel engines—two were conventional and one was closed cycle using liquid oxygen. [citation needed] In the Soviet system, called a "single propulsion system", oxygen was added after the exhaust gases had been filtered through a lime-based chemical absorbent. The submarine could also run its diesel using a snorkel.
The 70-foot-long (21 m), 17-inch-diameter (430 mm) liquid oxygen feedline runs externally along the right side of the liquid hydrogen tank up and into the intertank. Two 5-inch (130 mm) diameter re-pressurization lines run beside it. One supplies hydrogen gas to the liquid hydrogen tank and the other supplies oxygen gas to the liquid oxygen tank.