When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    A fundamental solution of the heat equation is a solution that corresponds to the initial condition of an initial point source of heat at a known position. These can be used to find a general solution of the heat equation over certain domains (see, for instance, ( Evans 2010 )).

  3. Self-similar solution - Wikipedia

    en.wikipedia.org/wiki/Self-similar_solution

    In the study of partial differential equations, particularly in fluid dynamics, a self-similar solution is a form of solution which is similar to itself if the independent and dependent variables are appropriately scaled.

  4. Partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Partial_differential_equation

    In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.

  5. Parabolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Parabolic_partial...

    A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena in, i.a., engineering science, quantum mechanics and financial mathematics. Examples include the heat equation, time-dependent Schrödinger equation and the Black–Scholes ...

  6. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    This article describes how to use a computer to calculate an approximate numerical solution of the discretized equation, in a time-dependent situation. In order to be concrete, this article focuses on heat flow, an important example where the convection–diffusion equation applies. However, the same mathematical analysis works equally well to ...

  7. d'Alembert's formula - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_formula

    The characteristics of the PDE are = (where sign states the two solutions to quadratic equation), so we can use the change of variables = + (for the positive solution) and = (for the negative solution) to transform the PDE to =.

  8. Porous medium equation - Wikipedia

    en.wikipedia.org/wiki/Porous_medium_equation

    The porous medium equation name originates from its use in describing the flow of an ideal gas in a homogeneous porous medium. [6] We require three equations to completely specify the medium's density , flow velocity field , and pressure : the continuity equation for conservation of mass; Darcy's law for flow in a porous medium; and the ideal gas equation of state.

  9. Stefan problem - Wikipedia

    en.wikipedia.org/wiki/Stefan_problem

    From a mathematical point of view, the phases are merely regions in which the solutions of the underlying PDE are continuous and differentiable up to the order of the PDE. In physical problems such solutions represent properties of the medium for each phase. The moving boundaries (or interfaces) are infinitesimally thin surfaces that separate ...