Search results
Results From The WOW.Com Content Network
Thomson's model marks the moment when the development of atomic theory passed from chemists to physicists. While atomic theory was widely accepted by chemists by the end of the 19th century, physicists remained skeptical because the atomic model lacked any properties which concerned their field, such as electric charge, magnetic moment, volume, or absolute mass.
The Thomson problem is a natural consequence of J. J. Thomson's plum pudding model in the absence of its uniform positive background charge. [ 12 ] "No fact discovered about the atom can be trivial, nor fail to accelerate the progress of physical science, for the greater part of natural philosophy is the outcome of the structure and mechanism ...
The current theoretical model of the atom involves a dense nucleus surrounded by a probabilistic "cloud" of electrons. Atomic theory is the scientific theory that matter is composed of particles called atoms. The definition of the word "atom" has changed over the years in response to scientific discoveries.
Thomson's prize-winning master's work, Treatise on the motion of vortex rings, shows his early interest in atomic structure. [3] In it, Thomson mathematically described the motions of William Thomson's vortex theory of atoms. [17] Thomson published a number of papers addressing both mathematical and experimental issues of electromagnetism.
The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [1]: 123 Thomson had discovered the electron through his work on cathode rays [2] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.
[3] [4] In it, Thomson developed a mathematical treatment of the motions of William Thomson and Peter Tait's atoms. [5] When Thomson later discovered the electron (for which he received a Nobel Prize), he abandoned his "nebular atom" hypothesis based on the vortex atomic theory, in favour of his plum pudding model.
In 1904, Thomson suggested that the atom was a sphere of uniform positive electrification, with electrons scattered through it like plums in a pudding, giving rise to the term plum pudding model. Nagaoka rejected Thomson's model on the grounds that opposite charges are impenetrable.
When Bohr began his work on a new atomic theory in the summer of 1912 [8]: 237 the atomic model proposed by J J Thomson, now known as the Plum pudding model, was the best available. [9]: 37 Thomson proposed a model with electrons rotating in coplanar rings within an atomic-sized, positively-charged, spherical volume. Thomson showed that this ...