Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.
Type IV probability density functions (means=0, variances=1) The Type IV generalized logistic, or logistic-beta distribution, with support and shape parameters , >, has (as shown above) the probability density function (pdf):
Probability density function (pdf) or probability density: function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the random variable would equal that sample.
The probability density function is the partial derivative of the cumulative distribution function: (;,) = (;,) = / (+ /) = (() / + / ()) = ().When the location parameter μ is 0 and the scale parameter s is 1, then the probability density function of the logistic distribution is given by
Johnson's -distribution has been used successfully to model asset returns for portfolio management. [3] This comes as a superior alternative to using the Normal distribution to model asset returns.
In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution.It models a broad range of random variables, largely in the nature of a time to failure or time between events.
A Pearson density p is defined to be any valid solution to the differential equation (cf. Pearson 1895, p. 381) ′ () + + + + = ()with: =, = = +, =. According to Ord, [3] Pearson devised the underlying form of Equation (1) on the basis of, firstly, the formula for the derivative of the logarithm of the density function of the normal distribution (which gives a linear function) and, secondly ...
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...