Search results
Results From The WOW.Com Content Network
"The problem of deciding whether the definite contour multiple integral of an elementary meromorphic function is zero over an everywhere real analytic manifold on which it is analytic", a consequence of the MRDP theorem resolving Hilbert's tenth problem. [5] Determining the domain of a solution to an ordinary differential equation of the form
Parsons problems consist of a partially completed solution and a selection of lines of code that some of which, when arranged appropriately, correctly complete the solution. There is great flexibility in how Parsons problems can be designed, including the types of code fragments from which to select, and how much structure of the solution is ...
An animation of the figure-8 solution to the three-body problem over a single period T ≃ 6.3259 [13] 20 examples of periodic solutions to the three-body problem. In the 1970s, Michel Hénon and Roger A. Broucke each found a set of solutions that form part of the same family of solutions: the Broucke–Hénon–Hadjidemetriou family. In this ...
Moravec's paradox: Logical thought is hard for humans and easy for computers, but picking a screw from a box of screws is an unsolved problem. Movement paradox: In transformational linguistics, there are pairs of sentences in which the sentence without movement is ungrammatical while the sentence with movement is not.
To find all solutions, one simply makes a note and continues, rather than ending the process, when a solution is found, until all solutions have been tried. To find the best solution, one finds all solutions by the method just described and then comparatively evaluates them based upon some predefined set of criteria, the existence of which is a ...
Word problem from the Līlāvatī (12th century), with its English translation and solution. In science education, a word problem is a mathematical exercise (such as in a textbook, worksheet, or exam) where significant background information on the problem is presented in ordinary language rather than in mathematical notation.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
One important drawback for applications of the solution of the classical secretary problem is that the number of applicants must be known in advance, which is rarely the case. One way to overcome this problem is to suppose that the number of applicants is a random variable N {\displaystyle N} with a known distribution of P ( N = k ) k = 1 , 2 ...