Search results
Results From The WOW.Com Content Network
In linear algebra, a column vector with elements is an matrix [1] consisting of a single column of entries, for example, = [].. Similarly, a row vector is a matrix for some , consisting of a single row of entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)
The column space of an m × n matrix with components from is a linear subspace of the m-space. The dimension of the column space is called the rank of the matrix and is at most min(m, n). [1] A definition for matrices over a ring is also possible. The row space is defined similarly.
Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.
In mathematics, the Khatri–Rao product or block Kronecker product of two partitioned matrices and is defined as [1] [2] [3] = in which the ij-th block is the m i p i × n j q j sized Kronecker product of the corresponding blocks of A and B, assuming the number of row and column partitions of both matrices is equal.
The definition of matrix product requires that the entries belong to a semiring, and does not require multiplication of elements of the semiring to be commutative. In many applications, the matrix elements belong to a field, although the tropical semiring is also a common choice for graph shortest path problems. [15]
An important definition is the barred fermion field ¯, which is defined to be †, where † denotes the Hermitian adjoint of ψ, and γ 0 is the zeroth gamma matrix. If ψ is thought of as an n × 1 matrix then ψ ¯ {\displaystyle {\bar {\psi }}} should be thought of as a 1 × n matrix .
An circulant matrix takes the form = [] or the transpose of this form (by choice of notation). If each c i {\displaystyle c_{i}} is a p × p {\displaystyle p\times p} square matrix , then the n p × n p {\displaystyle np\times np} matrix C {\displaystyle C} is called a block-circulant matrix .