When.com Web Search

  1. Ad

    related to: edge and vertex in graph calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  3. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A loop is an edge that joins a vertex to itself. Graphs as defined in the two definitions above cannot have loops, because a loop joining a vertex to itself is the edge (for an undirected simple graph) or is incident on (for an undirected multigraph) {,} = {} which is not in {{,},}. To allow loops, the definitions must be expanded.

  4. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  5. Reachability - Wikipedia

    en.wikipedia.org/wiki/Reachability

    In graph theory, reachability refers to the ability to get from one vertex to another within a graph. A vertex s {\displaystyle s} can reach a vertex t {\displaystyle t} (and t {\displaystyle t} is reachable from s {\displaystyle s} ) if there exists a sequence of adjacent vertices (i.e. a walk ) which starts with s {\displaystyle s} and ends ...

  6. Degree matrix - Wikipedia

    en.wikipedia.org/wiki/Degree_matrix

    where the degree ⁡ of a vertex counts the number of times an edge terminates at that vertex. In an undirected graph, this means that each loop increases the degree of a vertex by two. In a directed graph, the term degree may refer either to indegree (the number of incoming edges at each vertex) or outdegree (the number of outgoing edges at ...

  7. Edge contraction - Wikipedia

    en.wikipedia.org/wiki/Edge_contraction

    In graph theory, an edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices that it previously joined. Edge contraction is a fundamental operation in the theory of graph minors. Vertex identification is a less restrictive form of this operation.

  8. Edge and vertex spaces - Wikipedia

    en.wikipedia.org/wiki/Edge_and_vertex_spaces

    The edge space is the /-vector space freely generated by the edge set E. The dimension of the vertex space is thus the number of vertices of the graph, while the dimension of the edge space is the number of edges. These definitions can be made more explicit. For example, we can describe the edge space as follows:

  9. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    This can be translated into graph-theoretic terms as asking for an Euler path or Euler tour of a connected graph representing the city and its bridges: a walk through the graph that traverses each edge once, either ending at a different vertex than it starts in the case of an Euler path or returning to its starting point in the case of an Euler ...