When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    Every bounded-above monotonically nondecreasing sequence of real numbers is convergent in the real numbers because the supremum exists and is a real number. The proposition does not apply to rational numbers because the supremum of a sequence of rational numbers may be irrational.

  3. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    It is possible to prove the least-upper-bound property using the assumption that every Cauchy sequence of real numbers converges. Let S be a nonempty set of real numbers. If S has exactly one element, then its only element is a least upper bound. So consider S with more than one element, and suppose that S has an upper bound B 1.

  4. Liouville's theorem (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    Since is bounded, the averages of it over the two balls are arbitrarily close, and so assumes the same value at any two points. The proof can be adapted to the case where the harmonic function f {\displaystyle f} is merely bounded above or below.

  5. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity. There are many types of sequences and modes of convergence , and different proof techniques may be more appropriate than others for proving each type of convergence of each type ...

  6. Bolzano–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Bolzano–Weierstrass_theorem

    Proof: (sequential compactness implies closed and bounded) Suppose A {\displaystyle A} is a subset of R n {\displaystyle \mathbb {R} ^{n}} with the property that every sequence in A {\displaystyle A} has a subsequence converging to an element of A {\displaystyle A} .

  7. Arzelà–Ascoli theorem - Wikipedia

    en.wikipedia.org/wiki/Arzelà–Ascoli_theorem

    Since F is uniformly bounded, the set of points {f(x 1)} f∈F is bounded, and hence by the Bolzano–Weierstrass theorem, there is a sequence {f n 1} of distinct functions in F such that {f n 1 (x 1)} converges. Repeating the same argument for the sequence of points {f n 1 (x 2)} , there is a subsequence {f n 2} of {f n 1} such that {f n 2 (x ...

  8. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    Each of the probabilities on the right-hand side converge to zero as n → ∞ by definition of the convergence of {X n} and {Y n} in probability to X and Y respectively. Taking the limit we conclude that the left-hand side also converges to zero, and therefore the sequence {(X n, Y n)} converges in probability to {(X, Y)}.

  9. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    The monotone convergence theorem (described as the fundamental axiom of analysis by Körner [1]) states that every nondecreasing, bounded sequence of real numbers converges. This can be viewed as a special case of the least upper bound property, but it can also be used fairly directly to prove the Cauchy completeness of the real numbers.