Search results
Results From The WOW.Com Content Network
The MAP can be used to obtain a point estimate of an unobserved quantity on the basis of empirical data. It is closely related to the method of maximum likelihood (ML) estimation, but employs an augmented optimization objective which incorporates a prior density over the quantity one wants to estimate.
Graphical scale bar in combination with a scale expressed as a ratio and a conversion help. The scale ratio of a model represents the proportional ratio of a linear dimension of the model to the same feature of the original. Examples include a 3-dimensional scale model of a building or the scale drawings of the elevations or plans of a building ...
The percentage of correctly classified cases is called the hit ratio. Plot the results on a two dimensional map, define the dimensions, and interpret the results. The statistical program (or a related module) will map the results. The map will plot each product (usually in two-dimensional space).
The scale of a map is the ratio of a distance on the map to the corresponding distance on the ground. This simple concept is complicated by the curvature of the Earth's surface, which forces scale to vary across a map. Because of this variation, the concept of scale becomes meaningful in two distinct ways.
A Poincaré plot, named after Henri Poincaré, is a graphical representation used to visualize the relationship between consecutive data points in time series to detect patterns and irregularities in the time series, revealing information about the stability of dynamical systems, providing insights into periodic orbits, chaotic motions, and bifurcations.
The inspiration for this method of community detection is the optimization of modularity as the algorithm progresses. Modularity is a scale value between −1 (non-modular clustering) and 1 (fully modular clustering) that measures the relative density of edges inside communities with respect to edges outside communities.
Mapping the results and defining the dimensions – The statistical program (or a related module) will map the results. The map will plot each product (usually in two-dimensional space). The proximity of products to each other indicate either how similar they are or how preferred they are, depending on which approach was used.
The following shows how to implement a location–scale family in a statistical package or programming environment where only functions for the "standard" version of a distribution are available. It is designed for R but should generalize to any language and library.