When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value x = − 2 {\displaystyle x=-2} ), the operation of multiplying by ( x − 2 ) ( x + 2 ) {\displaystyle (x-2)(x+2)} would be a multiplication by zero.

  3. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Therefore, to prove that Fermat's equation has no solutions for n > 2, it suffices to prove that it has no solutions for n = 4 and for all odd primes p. For any such odd exponent p, every positive-integer solution of the equation a p + b p = c p corresponds to a general integer solution to the equation a p + b p + c p = 0.

  4. Overdetermined system - Wikipedia

    en.wikipedia.org/wiki/Overdetermined_system

    This case yields no solution. Example: x = 1, x = 2. M > N but only K equations (K < M and K ≤ N+1) are linearly independent. There exist three possible sub-cases of this: K = N+1. This case yields no solutions. Example: 2x = 2, x = 1, x = 2. K = N. This case yields either a single solution or no solution, the latter occurring when the ...

  5. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    The process of row reduction makes use of elementary row operations, and can be divided into two parts.The first part (sometimes called forward elimination) reduces a given system to row echelon form, from which one can tell whether there are no solutions, a unique solution, or infinitely many solutions.

  6. Consistent and inconsistent equations - Wikipedia

    en.wikipedia.org/wiki/Consistent_and...

    The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...

  7. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    The fact that every polynomial equation of positive degree has solutions, possibly non-real, was asserted during the 17th century, but completely proved only at the beginning of the 19th century. This is the fundamental theorem of algebra , which does not provide any tool for computing exactly the solutions, although Newton's method allows ...

  8. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]

  9. Beal conjecture - Wikipedia

    en.wikipedia.org/wiki/Beal_conjecture

    The equation + = has no solutions in positive integers and pairwise coprime integers A, B, C if x, y, z > 2. The conjecture was formulated in 1993 by Andrew Beal , a banker and amateur mathematician , while investigating generalizations of Fermat's Last Theorem .