When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Anabolism - Wikipedia

    en.wikipedia.org/wiki/Anabolism

    High amounts of ATP cause cells to favor the anabolic pathway and slow catabolic activity, while excess ADP slows anabolism and favors catabolism. [10] These pathways are also regulated by circadian rhythms, with processes such as glycolysis fluctuating to match an animal's normal periods of activity throughout the day. [12]

  3. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    The degradative process of a catabolic pathway provides the energy required to conduct the biosynthesis of an anabolic pathway. [6] In addition to the two distinct metabolic pathways is the amphibolic pathway, which can be either catabolic or anabolic based on the need for or the availability of energy.

  4. Energy charge - Wikipedia

    en.wikipedia.org/wiki/Energy_charge

    Daniel Atkinson showed that when the energy charge increases from 0.6 to 1.0, the citrate lyase and phosphoribosyl pyrophosphate synthetase, two enzymes controlling anabolic (ATP-demanding) pathways are activated, [2] [3] while the phosphofructokinase and the pyruvate dehydrogenase, two enzymes controlling amphibolic pathways (supplying ATP as ...

  5. Fatty acid metabolism - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_metabolism

    The energy yield from a gram of fatty acids is approximately 9 kcal (37 kJ), much higher than the 4 kcal (17 kJ) for carbohydrates. Since the hydrocarbon portion of fatty acids is hydrophobic , these molecules can be stored in a relatively anhydrous (water-free) environment.

  6. Protein metabolism - Wikipedia

    en.wikipedia.org/wiki/Protein_metabolism

    This helps to conserve as much energy as possible and to avoid futile cycles. Futile cycles occur when the catabolic and anabolic pathways are both in effect at the same time and rate for the same reaction. Since the intermediates being created are consumed, the body makes no net gain. Energy is lost through futile cycles.

  7. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [1]

  8. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    The energy from the acetyl group, in the form of electrons, is used to reduce NAD+ and FAD to NADH and FADH 2, respectively. NADH and FADH 2 contain the stored energy harnessed from the initial glucose molecule and is used in the electron transport chain where the bulk of the ATP is produced. [1]

  9. Gluconeogenesis - Wikipedia

    en.wikipedia.org/wiki/Gluconeogenesis

    Gluconeogenesis is a pathway consisting of a series of eleven enzyme-catalyzed reactions. The pathway will begin in either the liver or kidney, in the mitochondria or cytoplasm of those cells, this being dependent on the substrate being used. Many of the reactions are the reverse of steps found in glycolysis. [citation needed]