Search results
Results From The WOW.Com Content Network
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
In some cases, this is better. = ((, | | /)). [citation needed] However, in situations with large sample sizes, using the correction will have little effect on the value of the test statistic, and hence the p-value.
The example above is the simplest kind of contingency table, a table in which each variable has only two levels; this is called a 2 × 2 contingency table. In principle, any number of rows and columns may be used. There may also be more than two variables, but higher order contingency tables are difficult to represent visually.
Pearson's chi-squared test or Pearson's test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates , likelihood ratio , portmanteau test in time series , etc.) – statistical ...
For this reason, it is preferable to use the t distribution rather than the normal approximation or the chi-squared approximation for a small sample size. Similarly, in analyses of contingency tables, the chi-squared approximation will be poor for a small sample size, and it is preferable to use Fisher's exact test.
Bowker's test of symmetry; Categorical distribution, general model; Chi-squared test; Cochran–Armitage test for trend; Cochran–Mantel–Haenszel statistics; Correspondence analysis; Cronbach's alpha; Diagnostic odds ratio; G-test; Generalized estimating equations; Generalized linear models; Krichevsky–Trofimov estimator; Kuder ...
Boschloo's test is a statistical hypothesis test for analysing 2x2 contingency tables. It examines the association of two Bernoulli distributed random variables and is a uniformly more powerful alternative to Fisher's exact test. It was proposed in 1970 by R. D. Boschloo. [1]
It should only contain pages that are Statistical tests for contingency tables or lists of Statistical tests for contingency tables, as well as subcategories containing those things (themselves set categories). Topics about Statistical tests for contingency tables in general should be placed in relevant topic categories.