When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    This undirected cyclic graph can be described by the three unordered lists {b, c}, {a, c}, {a, b}. In graph theory and computer science, an adjacency list is a collection of unordered lists used to represent a finite graph. Each unordered list within an adjacency list describes the set of neighbors of a particular vertex in the graph.

  3. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected (i.e. all of its edges are bidirectional), the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory.

  4. Seidel's algorithm - Wikipedia

    en.wikipedia.org/wiki/Seidel's_algorithm

    The Python code below assumes the input graph is given as a -adjacency matrix with zeros on the diagonal. It defines the function APD which returns a matrix with entries D i , j {\displaystyle D_{i,j}} such that D i , j {\displaystyle D_{i,j}} is the length of the shortest path between the vertices i {\displaystyle i} and j {\displaystyle j} .

  5. Graph (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Graph_(abstract_data_type)

    Graphs with trillions of edges occur in machine learning, social network analysis, and other areas. Compressed graph representations have been developed to reduce I/O and memory requirements. General techniques such as Huffman coding are applicable, but the adjacency list or adjacency matrix can be processed in specific ways to increase ...

  6. NetworkX - Wikipedia

    en.wikipedia.org/wiki/NetworkX

    NetworkX is suitable for operation on large real-world graphs: e.g., graphs in excess of 10 million nodes and 100 million edges. [ clarification needed ] [ 19 ] Due to its dependence on a pure-Python "dictionary of dictionary" data structure, NetworkX is a reasonably efficient, very scalable , highly portable framework for network and social ...

  7. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    In the maximal clique listing problem, the input is an undirected graph, and the output is a list of all its maximal cliques. The maximum clique problem may be solved using as a subroutine an algorithm for the maximal clique listing problem, because the maximum clique must be included among all the maximal cliques. [17]

  8. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    For sparse graphs, that is, graphs with far fewer than | | edges, Dijkstra's algorithm can be implemented more efficiently by storing the graph in the form of adjacency lists and using a self-balancing binary search tree, binary heap, pairing heap, Fibonacci heap or a priority heap as a priority queue to implement extracting minimum efficiently.

  9. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.