When.com Web Search

  1. Ads

    related to: fundamentals of differential equations solutions

Search results

  1. Results From The WOW.Com Content Network
  2. Fundamental solution - Wikipedia

    en.wikipedia.org/wiki/Fundamental_solution

    Once the fundamental solution is found, it is straightforward to find a solution of the original equation, through convolution of the fundamental solution and the desired right hand side. Fundamental solutions also play an important role in the numerical solution of partial differential equations by the boundary element method.

  3. Method of fundamental solutions - Wikipedia

    en.wikipedia.org/.../Method_of_fundamental_solutions

    The ideas behind the MFS were developed primarily by V. D. Kupradze and M. A. Alexidze in the late 1950s and early 1960s. [1] However, the method was first proposed as a computational technique much later by R. Mathon and R. L. Johnston in the late 1970s, [2] followed by a number of papers by Mathon, Johnston and Graeme Fairweather with applications.

  4. Fundamental matrix (linear differential equation) - Wikipedia

    en.wikipedia.org/wiki/Fundamental_matrix_(linear...

    In mathematics, a fundamental matrix of a system of n homogeneous linear ordinary differential equations ˙ = () is a matrix-valued function () whose columns are linearly independent solutions of the system. [1]

  5. Differential equation - Wikipedia

    en.wikipedia.org/wiki/Differential_equation

    The study of differential equations consists mainly of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined ...

  6. Normalized solution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Normalized_solution...

    The exploration of normalized solutions for the nonlinear Schrödinger equation can be traced back to the study of standing wave solutions with prescribed -norm. Jürgen Moser [ 4 ] firstly introduced the concept of normalized solutions in the study of regularity properties of solutions to elliptic partial differential equations (elliptic PDEs).

  7. Finite element method - Wikipedia

    en.wikipedia.org/wiki/Finite_element_method

    In the first step above, the element equations are simple equations that locally approximate the original complex equations to be studied, where the original equations are often partial differential equations (PDEs). To explain the approximation of this process, FEM is commonly introduced as a special case of the Galerkin method.

  8. Peano existence theorem - Wikipedia

    en.wikipedia.org/wiki/Peano_existence_theorem

    In mathematics, specifically in the study of ordinary differential equations, the Peano existence theorem, Peano theorem or Cauchy–Peano theorem, named after Giuseppe Peano and Augustin-Louis Cauchy, is a fundamental theorem which guarantees the existence of solutions to certain initial value problems.

  9. Spectral method - Wikipedia

    en.wikipedia.org/wiki/Spectral_method

    Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain differential equations. The idea is to write the solution of the differential equation as a sum of certain "basis functions" (for example, as a Fourier series which is a sum of sinusoids) and then to choose the ...