When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  3. Cramér's decomposition theorem - Wikipedia

    en.wikipedia.org/wiki/Cramér's_decomposition...

    Cramér’s decomposition theorem for a normal distribution is a result of probability theory. It is well known that, given independent normally distributed random variables ξ 1, ξ 2, their sum is normally distributed as well. It turns out that the converse is also true.

  4. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  5. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    The i.i.d. assumption is also used in the central limit theorem, which states that the probability distribution of the sum (or average) of i.i.d. variables with finite variance approaches a normal distribution. [4] The i.i.d. assumption frequently arises in the context of sequences of random variables. Then, "independent and identically ...

  6. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    Product distribution; Mellin transform; Sum of normally distributed random variables; List of convolutions of probability distributions – the probability measure of the sum of independent random variables is the convolution of their probability measures. Law of total expectation; Law of total variance; Law of total covariance; Law of total ...

  7. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    If and are normally distributed and independent, this implies they are "jointly normally distributed", i.e., the pair (,) must have multivariate normal distribution. However, a pair of jointly normally distributed variables need not be independent (would only be so if uncorrelated, ρ = 0 {\displaystyle \rho =0} ).

  8. Irwin–Hall distribution - Wikipedia

    en.wikipedia.org/wiki/Irwin–Hall_distribution

    In probability and statistics, the Irwin–Hall distribution, named after Joseph Oscar Irwin and Philip Hall, is a probability distribution for a random variable defined as the sum of a number of independent random variables, each having a uniform distribution. [1] For this reason it is also known as the uniform sum distribution.

  9. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    Conversely, if and are independent random variables and their sum + has a normal distribution, then both and must be normal deviates. [ 48 ] This result is known as Cramér's decomposition theorem , and is equivalent to saying that the convolution of two distributions is normal if and only if both are normal.