When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbit - Wikipedia

    en.wikipedia.org/wiki/Orbit

    An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...

  3. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    Real orbits have perturbations, so a given set of Keplerian elements accurately describes an orbit only at the epoch. Evolution of the orbital elements takes place due to the gravitational pull of bodies other than the primary, the nonsphericity of the primary, atmospheric drag , relativistic effects , radiation pressure , electromagnetic ...

  4. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    The blue planet feels only an inverse-square force and moves on an ellipse (k = 1). The green planet moves angularly three times as fast as the blue planet (k = 3); it completes three orbits for every orbit of the blue planet. The red planet illustrates purely radial motion with no angular motion (k = 0).

  5. Solar System - Wikipedia

    en.wikipedia.org/wiki/Solar_System

    They have highly eccentric orbits, generally a perihelion within the orbits of the inner planets and an aphelion far beyond Pluto. When a comet enters the inner Solar System, its proximity to the Sun causes its icy surface to sublimate and ionise , creating a coma : a long tail of gas and dust often visible to the naked eye.

  6. List of orbits - Wikipedia

    en.wikipedia.org/wiki/List_of_orbits

    Orbits around the L 1 point are used by spacecraft that want a constant view of the Sun, such as the Solar and Heliospheric Observatory. Orbits around L 2 are used by missions that always want both Earth and the Sun behind them. This enables a single shield to block radiation from both Earth and the Sun, allowing passive cooling of sensitive ...

  7. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    The table lists the values for all planets and dwarf planets, and selected asteroids, comets, and moons. Mercury has the greatest orbital eccentricity of any planet in the Solar System (e = 0.2056), followed by Mars of 0.093 4. Such eccentricity is sufficient for Mercury to receive twice as much solar irradiation at perihelion compared to aphelion.

  8. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    Real spherical harmonics are physically relevant when an atom is embedded in a crystalline solid, in which case there are multiple preferred symmetry axes but no single preferred direction. [citation needed] Real atomic orbitals are also more frequently encountered in introductory chemistry textbooks and shown in common orbital visualizations. [24]

  9. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit. The elliptical orbits of planets were indicated by calculations of the orbit of Mars. From this, Kepler inferred that other bodies in the Solar System, including those farther away from the Sun, also have elliptical orbits. The ...