When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a, b, c, and d of the cubic equation are real numbers, then it has at least one real root (this is true for all odd-degree polynomial functions). All of the roots of the cubic equation can be found by ...

  3. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The graph of any cubic function is similar to such a curve. The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions. Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of ...

  4. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    There are no nonconvex Euclidean regular tessellations in any number of dimensions. ... There is only one polytope ... Polygons named for their number of sides ...

  5. Cube root - Wikipedia

    en.wikipedia.org/wiki/Cube_root

    Cubic equations, which are polynomial equations of the third degree (meaning the highest power of the unknown is 3) can always be solved for their three solutions in terms of cube roots and square roots (although simpler expressions only in terms of square roots exist for all three solutions, if at least one of them is a rational number).

  6. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating ⁠ ⁠ and ⁠ ⁠, which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]

  7. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced to the computation of square and cube roots.

  8. Doubling the cube - Wikipedia

    en.wikipedia.org/wiki/Doubling_the_cube

    According to Eutocius, Archytas was the first to solve the problem of doubling the cube (the so-called Delian problem) with an ingenious geometric construction. [ 2 ] [ 3 ] [ 4 ] The nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837.

  9. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    This rational number can be found by realizing that x also appears under the radical sign, which gives the equation x = 2 + x . {\displaystyle x={\sqrt {2+x}}.} If we solve this equation, we find that x = 2 (the second solution x = −1 doesn't apply, under the convention that the positive square root is meant).