Search results
Results From The WOW.Com Content Network
Inductive reasoning is any of various methods of reasoning in which broad generalizations or principles are derived from a body of observations. [1] [2] This article is concerned with the inductive reasoning other than deductive reasoning (such as mathematical induction), where the conclusion of a deductive argument is certain, given the premises are correct; in contrast, the truth of the ...
Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. [1] [2]Mathematical induction is a method for proving that a statement () is true for every natural number, that is, that the infinitely many cases (), (), (), (), … all hold.
For example, one might argue that it is valid to use inductive inference in the future because this type of reasoning has yielded accurate results in the past. However, this argument relies on an inductive premise itself—that past observations of induction being valid will mean that future observations of induction will also be valid.
Francis Bacon, articulating inductivism in England, is often falsely stereotyped as a naive inductivist. [11] [12] Crudely explained, the "Baconian model" advises to observe nature, propose a modest law that generalizes an observed pattern, confirm it by many observations, venture a modestly broader law, and confirm that, too, by many more observations, while discarding disconfirmed laws. [13]
The corresponding conditional of a valid argument is a logical truth and the negation of its corresponding conditional is a contradiction. The conclusion is a necessary consequence of its premises. An argument that is not valid is said to be "invalid". An example of a valid (and sound) argument is given by the following well-known syllogism:
Inductive logic programming has adopted several different learning settings, the most common of which are learning from entailment and learning from interpretations. [16] In both cases, the input is provided in the form of background knowledge B, a logical theory (commonly in the form of clauses used in logic programming), as well as positive and negative examples, denoted + and respectively.
Formally, nimbers are defined inductively as follows: is {}, = {}, = {,} and for all , (+) = {}. While the word nim ber comes from the game nim , nimbers can be used to describe the positions of any finite, impartial game, and in fact, the Sprague–Grundy theorem states that every instance of a finite, impartial game can be associated with a ...
Modern proof theory treats proofs as inductively defined data structures, not requiring an assumption that axioms are "true" in any sense. This allows parallel mathematical theories as formal models of a given intuitive concept, based on alternate sets of axioms, for example axiomatic set theory and non-Euclidean geometry .