Search results
Results From The WOW.Com Content Network
The Clausius–Clapeyron equation [8]: 509 applies to vaporization of liquids where vapor follows ideal gas law using the ideal gas constant and liquid volume is neglected as being much smaller than vapor volume V. It is often used to calculate vapor pressure of a liquid. [9]
The coefficients given here correspond to equation 21 in Alduchov and Eskridge (1996). [2] See also discussion of Clausius-Clapeyron approximations used in meteorology and climatology. Tetens equation = (+) T is in °C and P is in kPa The Buck equation.
There are a number of methods for calculating the sublimation pressure (i.e., the vapor pressure) of a solid. One method is to estimate the sublimation pressure from extrapolated liquid vapor pressures (of the supercooled liquid), if the heat of fusion is known, by using this particular form of the Clausius–Clapeyron relation: [9]
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]
Here is a similar formula from the 67th edition of the CRC handbook. Note that the form of this formula as given is a fit to the Clausius–Clapeyron equation, which is a good theoretical starting point for calculating saturation vapor pressures: log 10 (P) = −(0.05223)a/T + b, where P is in mmHg, T is in kelvins, a = 38324, and b = 8.8017.
Suppose the heat of vaporization and the vapor pressure of a liquid at a certain temperature are known. In that case, the boiling point can be calculated by using the Clausius–Clapeyron equation, thus: where: is the boiling point at the pressure of interest, is the ideal gas constant,
Thus the P° pure vapor pressures for each component are a function of temperature (T): For example, commonly for a pure liquid component, the Clausius–Clapeyron relation may be used to approximate how the vapor pressure varies as a function of temperature. This makes each of the partial pressures dependent on temperature also regardless of ...
A convective boundary layer and a wake can surround the droplet. Furthermore, the shear force on the liquid surface causes an internal circulation that enhances the heating of the liquid. As a consequence, the vaporization rate increases with the droplet Reynolds number. Many different models exist for the single convective droplet vaporization ...