Search results
Results From The WOW.Com Content Network
Substituting into the Clapeyron equation =, we can obtain the Clausius–Clapeyron equation [8]: 509 = for low temperatures and pressures, [8]: 509 where is the specific latent heat of the substance. Instead of the specific, corresponding molar values (i.e. L {\\displaystyle L} in kJ/mol and R = 8.31 J/(mol⋅K)) may also be used.
The extent of boiling-point elevation can be calculated by applying Clausius–Clapeyron relation and Raoult's law together with the assumption of the non-volatility of the solute. The result is that in dilute ideal solutions, the extent of boiling-point elevation is directly proportional to the molal concentration (amount of substance per mass ...
The Clausius theorem is a mathematical representation of the second law of thermodynamics. It was developed by Rudolf Clausius who intended to explain the relationship between the heat flow in a system and the entropy of the system and its surroundings. Clausius developed this in his efforts to explain entropy and define it quantitatively.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
It goes on to say, however, that the exact equation is called the Clausius-Clapeyron equation in most texts for engineering thermodynamics and physics. (On the previous page, discussing the exact equation, the book said the exact version was called the Clapeyron equation, but said that it was also known as the Clausius-Clapeyron equation.)
At every two-step of the process, the mass of the system decreases, as we discard more and more salt as the "environment". However, if the equations of state for this salt is as shown in Fig. 1 (left), then we can start with a large but finite amount of salt, and end up with a small piece of salt that has =.
Pages in category "Thermodynamic equations" The following 31 pages are in this category, out of 31 total. ... Clausius–Clapeyron relation; Compressibility equation; D.
The preceding equilibrium equations are typically applied for each phase (liquid or vapor) individually, but the result can be plotted in a single diagram. In a binary boiling-point diagram, temperature (T ) (or sometimes pressure) is graphed vs. x 1. At any given temperature (or pressure) where both phases are present, vapor with a certain ...