When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.

  3. Polarization identity - Wikipedia

    en.wikipedia.org/wiki/Polarization_identity

    Law of cosines – Property of all triangles on a Euclidean plane; Mazur–Ulam theorem – Surjective isometries are affine mappings; Minkowski distance – Mathematical metric in normed vector space; Parallelogram law – Sum of the squares of all 4 sides of a parallelogram equals that of the 2 diagonals

  4. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .

  5. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    In ancient Greek mathematics, "space" was a geometric abstraction of the three-dimensional reality observed in everyday life. About 300 BC, Euclid gave axioms for the properties of space. Euclid built all of mathematics on these geometric foundations, going so far as to define numbers by comparing the lengths of line segments to the length of a ...

  6. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The area of the parallelogram is the absolute value of the determinant of the matrix formed by the vectors representing the parallelogram's sides. If the matrix entries are real numbers, the matrix A can be used to represent two linear maps: one that maps the standard basis vectors to the rows of A, and one that maps them to the columns of A.

  7. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).

  8. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram. The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the ...

  9. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    The Varignon parallelogram is a rectangle if and only if the diagonals of the quadrilateral are perpendicular, that is, if the quadrilateral is an orthodiagonal quadrilateral. [6]: p. 14 [7]: p. 169 For a self-crossing quadrilateral, the Varignon parallelogram can degenerate to four collinear points, forming a line segment traversed twice.