When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nevanlinna theory - Wikipedia

    en.wikipedia.org/wiki/Nevanlinna_theory

    The Second Fundamental Theorem allows to give an upper bound for the characteristic function in terms of N(r,a). For example, if f is a transcendental entire function, using the Second Fundamental theorem with k = 3 and a 3 = ∞, we obtain that f takes every value infinitely often, with at most two exceptions, proving Picard's Theorem.

  3. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each point in time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). Roughly speaking, the two operations can be ...

  4. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The theorem of Du Bois-Reymond asserts that this weak form implies the strong form. If L {\displaystyle L} has continuous first and second derivatives with respect to all of its arguments, and if ∂ 2 L ∂ f ′ 2 ≠ 0 , {\displaystyle {\frac {\partial ^{2}L}{\partial f'^{2}}}\neq 0,} then f {\displaystyle f} has two continuous derivatives ...

  5. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    The fundamental theorem of calculus is a theorem that links the concept of differentiating a function with the concept of integrating a function. The first part of the theorem, sometimes called the first fundamental theorem of calculus , states that one of the antiderivatives (also called indefinite integral ), say F , of some function f may be ...

  6. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    The second fundamental form of a parametric surface S in R 3 was introduced and studied by Gauss. First suppose that the surface is the graph of a twice continuously differentiable function, z = f(x,y), and that the plane z = 0 is tangent to the surface at the origin. Then f and its partial derivatives with respect to x and y vanish at (0,0).

  7. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space (generally n-dimensional) rather than just the real line. If φ : U ⊆ R n → R is a differentiable function and γ a differentiable curve in U which starts at a point p and ends at a point q, then

  8. List of theorems called fundamental - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems_called...

    In mathematics, a fundamental theorem is a theorem which is considered to be central and conceptually important for some topic. For example, the fundamental theorem of calculus gives the relationship between differential calculus and integral calculus . [ 1 ]

  9. Second fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/?title=Second_fundamental...

    Pages for logged out editors learn more. Contributions; Talk; Second fundamental theorem of calculus