Search results
Results From The WOW.Com Content Network
From the conjecture and the proof of the fundamental theorem of calculus, calculus as a unified theory of integration and differentiation is started. The first published statement and proof of a rudimentary form of the fundamental theorem, strongly geometric in character, [ 2 ] was by James Gregory (1638–1675).
The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space (generally n-dimensional) rather than just the real line. If φ : U ⊆ R n → R is a differentiable function and γ a differentiable curve in U which starts at a point p and ends at a point q , then
The fundamental lemma of the calculus of variations is typically used to transform this weak formulation into the strong formulation (differential equation), free of the integration with arbitrary function. The proof usually exploits the possibility to choose δf concentrated on an interval on which f keeps sign (positive or negative). Several ...
Stronger versions of the theorem only require that the partial derivative exist almost everywhere, and not that it be continuous. [2] This formula is the general form of the Leibniz integral rule and can be derived using the fundamental theorem of calculus.
Fundamental theorem of algebra (complex analysis) Fundamental theorem of arbitrage-free pricing (financial mathematics) Fundamental theorem of arithmetic (number theory) Fundamental theorem of calculus ; Fundamental theorem on homomorphisms (abstract algebra) Fundamental theorems of welfare economics ; Furry's theorem (quantum field theory)
Integration by substitution can be derived from the fundamental theorem of calculus as follows. Let f {\displaystyle f} and g {\displaystyle g} be two functions satisfying the above hypothesis that f {\displaystyle f} is continuous on I {\displaystyle I} and g ′ {\displaystyle g'} is integrable on the closed interval [ a , b ] {\displaystyle ...
"The first proof of the fundamental theorem of calculus and the discovery of the Taylor series can both be attributed to him." [13] [14] The book was reprinted in 1668 with an appendix, Geometriae Pars, in which Gregory explained how the volumes of solids of revolution could be determined.
James Gregory, influenced by Fermat's contributions both to tangency and to quadrature, was then able to prove a restricted version of the second fundamental theorem of calculus, that integrals can be computed using any of a function's antiderivatives. [26] [27] The first full proof of the fundamental theorem of calculus was given by Isaac Barrow.