Search results
Results From The WOW.Com Content Network
Biocatalysis utilizes these biological macromolecules to catalyze small molecule transformations. Biocatalysis refers to the use of living (biological) systems or their parts to speed up chemical reactions. In biocatalytic processes, natural catalysts, such as enzymes, perform chemical transformations on organic compounds.
Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Most enzymes are proteins, and most such processes are chemical reactions.
An example of an enzyme that contains a cofactor is carbonic anhydrase, which uses a zinc cofactor bound as part of its active site. [60] These tightly bound ions or molecules are usually found in the active site and are involved in catalysis. [1]: 8.1.1 For example, flavin and heme cofactors are often involved in redox reactions. [1]: 17
An illustrative example is the effect of catalysts to speed the decomposition of hydrogen peroxide into water and oxygen: . 2 H 2 O 2 → 2 H 2 O + O 2. This reaction proceeds because the reaction products are more stable than the starting compound, but this decomposition is so slow that hydrogen peroxide solutions are commercially available.
As an example, the separation step for ribonucleotide cleavage often utilizes affinity chromatography, in which a biological tag attached to each DNA strand is removed from any catalytically active strands via cleavage of a ribonucleotide base. This allows the catalytic strands to be separated by a column that specifically binds the tag, since ...
Bioorganic chemistry is a scientific discipline that combines organic chemistry and biochemistry. It is that branch of life science that deals with the study of biological processes using chemical methods. [1] Protein and enzyme function are examples of these processes. [2]
In this context, simple organic acids have been used as catalyst for the modification of cellulose in water on multi-ton scale. [9] When the organocatalyst is chiral an avenue is opened to asymmetric catalysis; for example, the use of proline in aldol reactions is an example of chirality and green chemistry. [10]
It is now possible to make ribozymes that will specifically cleave any RNA molecule. These RNA catalysts may have pharmaceutical applications. For example, a ribozyme has been designed to cleave the RNA of HIV. If such a ribozyme were made by a cell, all incoming virus particles would have their RNA genome cleaved by the ribozyme, which would ...