When.com Web Search

  1. Ad

    related to: understanding machine learning from theory to algorithms pdf notes

Search results

  1. Results From The WOW.Com Content Network
  2. Computational learning theory - Wikipedia

    en.wikipedia.org/wiki/Computational_learning_theory

    Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms. For example, PAC theory inspired boosting, VC theory led to support vector machines, and Bayesian inference led to belief ...

  3. Stability (learning theory) - Wikipedia

    en.wikipedia.org/wiki/Stability_(learning_theory)

    A stable learning algorithm is one for which the prediction does not change much when the training data is modified slightly. For instance, consider a machine learning algorithm that is being trained to recognize handwritten letters of the alphabet, using 1000 examples of handwritten letters and their labels ("A" to "Z") as a training set. One ...

  4. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  5. Theoretical computer science - Wikipedia

    en.wikipedia.org/wiki/Theoretical_computer_science

    Machine learning can be considered a subfield of computer science and statistics. It has strong ties to artificial intelligence and optimization, which deliver methods, theory and application domains to the field. Machine learning is employed in a range of computing tasks where designing and programming explicit, rule-based algorithms is

  6. Shai Ben-David - Wikipedia

    en.wikipedia.org/wiki/Shai_Ben-David

    Research in theoretical machine learning, learning theory, online algorithms: Awards: NeurIPS Best Paper Award: Scientific career: Fields: Theoretical machine learning: Institutions: University of Waterloo: Doctoral advisor: Saharon Shelah

  7. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  8. Algorithmic learning theory - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_learning_theory

    Synonyms include formal learning theory and algorithmic inductive inference [citation needed]. Algorithmic learning theory is different from statistical learning theory in that it does not make use of statistical assumptions and analysis. Both algorithmic and statistical learning theory are concerned with machine learning and can thus be viewed ...

  9. Vapnik–Chervonenkis theory - Wikipedia

    en.wikipedia.org/wiki/Vapnik–Chervonenkis_theory

    VC Theory is a major subbranch of statistical learning theory. One of its main applications in statistical learning theory is to provide generalization conditions for learning algorithms. From this point of view, VC theory is related to stability , which is an alternative approach for characterizing generalization.