Ad
related to: centripetal velocity formula physics calculator
Search results
Results From The WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
The centripetal force is due to the change in the direction of velocity. The normal force and weight may also point in the same direction. Both forces can point downwards, yet the object will remain in a circular path without falling down.
The speed (or the magnitude of velocity) relative to the centre of mass is constant: [1]: 30 = = where: , is the gravitational constant, is the mass of both orbiting bodies (+), although in common practice, if the greater mass is significantly larger, the lesser mass is often neglected, with minimal change in the result.
Newton illustrates his formula with three examples. In the first two, the central force is a power law, F(r) = r n−3, so C(r) is proportional to r n. The formula above indicates that the angular motion is multiplied by a factor k = 1/ √ n, so that the apsidal angle α equals 180°/ √ n.
Based on this argument, the privileged frame, wherein the laws of physics take on the simplest form, is a stationary frame in which no fictitious forces need to be invoked. Within this view of physics, any other phenomenon that is usually attributed to centrifugal force can be used to identify absolute rotation.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...
In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.
This equation is applicable when the final velocity v is unknown. Figure 2: Velocity and acceleration for nonuniform circular motion: the velocity vector is tangential to the orbit, but the acceleration vector is not radially inward because of its tangential component a θ that increases the rate of rotation: dω/dt = |a θ |/R.