When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geodesic - Wikipedia

    en.wikipedia.org/wiki/Geodesic

    Klein quartic with 28 geodesics (marked by 7 colors and 4 patterns). In geometry, a geodesic (/ ˌ dʒ iː. ə ˈ d ɛ s ɪ k,-oʊ-,-ˈ d iː s ɪ k,-z ɪ k /) [1] [2] is a curve representing in some sense the locally [a] shortest [b] path between two points in a surface, or more generally in a Riemannian manifold.

  3. Isomap - Wikipedia

    en.wikipedia.org/wiki/Isomap

    Isomap defines the geodesic distance to be the sum of edge weights along the shortest path between two nodes (computed using Dijkstra's algorithm, for example). The top n eigenvectors of the geodesic distance matrix , represent the coordinates in the new n -dimensional Euclidean space.

  4. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The neighbourhood swept out has similar properties to balls in Euclidean space, namely any two points in it are joined by a unique geodesic. This property is called "geodesic convexity" and the coordinates are called normal coordinates. The explicit calculation of normal coordinates can be accomplished by considering the differential equation ...

  5. 3-sphere - Wikipedia

    en.wikipedia.org/wiki/3-sphere

    The four Euclidean coordinates for S 3 are redundant since they are subject to the condition that x 0 2 + x 1 2 + x 2 2 + x 3 2 = 1. As a 3-dimensional manifold one should be able to parameterize S 3 by three coordinates, just as one can parameterize the 2-sphere using two coordinates (such as latitude and longitude ).

  6. Theorem of the three geodesics - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_the_three_geodesics

    A geodesic, on a Riemannian surface, is a curve that is locally straight at each of its points. On the Euclidean plane the geodesics are lines, and on a sphere the geodesics are great circles. The shortest path in the surface between two points is always a geodesic, but other geodesics may exist as well.

  7. Intrinsic metric - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_metric

    If the space has the stronger property that there always exists a path that achieves the infimum of length (a geodesic) then it is called a geodesic metric space or geodesic space. For instance, the Euclidean plane is a geodesic space, with line segments as its geodesics.

  8. Geodesic map - Wikipedia

    en.wikipedia.org/wiki/Geodesic_map

    In mathematics—specifically, in differential geometry—a geodesic map (or geodesic mapping or geodesic diffeomorphism) is a function that "preserves geodesics". More precisely, given two (pseudo-)Riemannian manifolds (M, g) and (N, h), a function φ : M → N is said to be a geodesic map if φ is a diffeomorphism of M onto N; and

  9. Cut locus - Wikipedia

    en.wikipedia.org/wiki/Cut_locus

    Cut locus C(P) of a point P on the surface of a cylinder. A point Q in the cut locus is shown with two distinct shortest paths , connecting it to P.. In the Euclidean plane, a point p has an empty cut locus, because every other point is connected to p by a unique geodesic (the line segment between the points).