Search results
Results From The WOW.Com Content Network
Computer engineers often need to write out binary quantities, but in practice writing out a binary number such as 1001001101010001 is tedious and prone to errors. Therefore, binary quantities are written in a base-8, or "octal", or, much more commonly, a base-16, "hexadecimal" (hex), number format. In the decimal system, there are 10 digits, 0 ...
The conversion is made in two steps using binary as an intermediate base. Octal is converted to binary and then binary to hexadecimal, grouping digits by fours, which correspond each to a hexadecimal digit. For instance, convert octal 1057 to hexadecimal: To binary:
Binary is also easily converted to the octal numeral system, since octal uses a radix of 8, which is a power of two (namely, 2 3, so it takes exactly three binary digits to represent an octal digit). The correspondence between octal and binary numerals is the same as for the first eight digits of hexadecimal in the table above.
In a fixed-width binary code, each letter, digit, or other character is represented by a bit string of the same length; that bit string, interpreted as a binary number, is usually displayed in code tables in octal, decimal or hexadecimal notation. There are many character sets and many character encodings for them. Binary to Hexadecimal or Decimal
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
Hexadecimal to octal transformation is useful to convert between binary and Base64. Such conversion is available for both advanced calculators and programming languages. For example, the hexadecimal representation of the 24 bits above is 4D616E. The octal representation is 23260556. Those 8 octal digits can be split into pairs (23 26 05 56 ...
Positional systems obtained by grouping binary digits by three (octal numeral system) or four (hexadecimal numeral system) are commonly used. For very large integers, bases 2 32 or 2 64 (grouping binary digits by 32 or 64, the length of the machine word) are used, as, for example, in GMP.
This scheme can also be referred to as Simple Binary-Coded Decimal (SBCD) or BCD 8421, and is the most common encoding. [12] Others include the so-called "4221" and "7421" encoding – named after the weighting used for the bits – and "Excess-3". [13]