Ad
related to: distributive property of algebra expression worksheet answer
Search results
Results From The WOW.Com Content Network
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra. For example, in elementary arithmetic , one has 2 ⋅ ( 1 + 3 ) = ( 2 ⋅ 1 ) + ( 2 ⋅ 3 ) . {\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}
The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]
The grid method uses the distributive property twice to expand the product, once for the horizontal factor, and once for the vertical factor. Historically the grid calculation (tweaked slightly) was the basis of a method called lattice multiplication , which was the standard method of multiple-digit multiplication developed in medieval Arabic ...
A non-associative algebra [1] (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative.That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative.
An element x is called a dual distributive element if ∀y,z: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). In a distributive lattice, every element is of course both distributive and dual distributive. In a non-distributive lattice, there may be elements that are distributive, but not dual distributive (and vice versa).
For example, multiplication is granted a higher precedence than addition, and it has been this way since the introduction of modern algebraic notation. [2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9.
The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial can be factored as follows:
In mathematics, the associative property [1] is a property of some binary operations that means that rearranging the parentheses in an expression will not change the result. In propositional logic , associativity is a valid rule of replacement for expressions in logical proofs .