When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]

  4. Sign function - Wikipedia

    en.wikipedia.org/wiki/Sign_function

    This counterexample confirms more formally the discontinuity of ⁡ at zero that is visible in the plot. Despite the sign function having a very simple form, the step change at zero causes difficulties for traditional calculus techniques, which are quite stringent in their requirements. Continuity is a frequent constraint.

  5. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set. The irrationals would then be the countable union of closed sets ⋃ i = 0 ∞ C i {\textstyle \bigcup _{i=0}^{\infty }C_{i}} , but since the irrationals do not contain an interval, neither can any of the C i ...

  6. Oscillation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Oscillation_(mathematics)

    For example, in the classification of discontinuities: in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits from the two sides);

  7. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.

  8. Baire function - Wikipedia

    en.wikipedia.org/wiki/Baire_function

    An example of a differentiable function whose derivative is not continuous (at x = 0) is the function equal to ⁡ (/) when x ≠ 0, and 0 when x = 0. An infinite sum of similar functions (scaled and displaced by rational numbers ) can even give a differentiable function whose derivative is discontinuous on a dense set.

  9. Branch point - Wikipedia

    en.wikipedia.org/wiki/Branch_point

    For example, the function w = z 1/2 has two branches: one where the square root comes in with a plus sign, and the other with a minus sign. A branch cut is a curve in the complex plane such that it is possible to define a single analytic branch of a multi-valued function on the plane minus that curve.